
 

 

 

 

Abstract—   The nonlinear singular integral equation 

associated with the Stokes gravity waves in the incompressible 

Euler fluid is studied. The existence of the solution is proved 

and the approximate solution is constructed by means of 

Maple. 

 
Index Terms— Singular Integral Equation, Stokes Gravity 

Waves   

 

I. INTRODUCTION 

tokes gravity wave is a periodic surface wave of per-

manent form on an invisced fluid layer of constant mean 

depth. In this case viscosity and compression plays an 

insignificant role and the fluid is assumed to be incompre-

ssible Euler fluid [1], [2], [3], [4]. The wavelength is small 

as compared with the mean depth. It is assumed, that the 

bot-tom of the reservoir is flat and the motion is two-dimen-

sional. In the early work of the author the singular integral 

equation for the Stokes free boundary was obtained [5]. In 

the present work it is assumed, that the period of the wave is 

rather small. The integral equation is simplified and the 

exis-tence of the solution is proved by means of 

Muskhelishvili theory and Shauder’s fixed point principle 

[11], [12]. The approximate profile of the wave is 

constructed by using Maple.  

  

II. STATEMENT OF THE PROBLEM  

 

   The coordinate system xOy  moving with the wave is 

chosen. The axis Ox  passes along the bottom and the axis 

Oy  passes through the maximum point of the wave.  

Mathematically the problem is stated as follows [3]  

 

 STOKES PROBLEM. Find the periodic curve 

)(: xyy    such that, if f   is a conformal mapping of 

the area   )(0 xytD    on the strip 

   )(,,0 fconstqq ,  then the 

following condition holds  
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where ,)(  izf  , iyxz  ,  is a complex 

potential,   is a speed potential,   is a stream function, 

)(' zf   is a complex speed, A   and q  are the definite 

positive  constants, g  is a gravity acceleration. 

   Here we consider the Stokes Problem for the symmetric 

periodic peaked waves with the period 12  and with the 

condition 0)2( 1

'  iqf  . The case ,0)(' zf was 

considered by different authors [1], [2], [3], [4], [6], [7], [8], 

[9]. 

   

III. SOLUTION OF THE PROBLEM 

 

  In the work of the author [5] the Stokes problem was 

reduced to the following singular integral equation 
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where )( 0tu  is an unknown function of the Muskhelishvili-

Kveselava 
*H class [11], zln is the branch for which 

01ln  ,   is the Weierstrss “zeta-function” for the  

fundamental periods 12  and qi 22 ,2   [10]. 

  Weierstrass “zeta-function” is representable by the series 

[10]  
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and has the following properties: 
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1. It is a meromorphic function with the simple poles 

,...2,1,0,;22 21  nmnimTmn   

2. )()( zz   . 

3. )(z  is a double quasi-periodic function, i.e. 

11 )()2(   zz ,  

22 )()2(   ziz , 

where 1  and  2 , are the addends of 

11)(2   ,  22 )(2  i , 

ii   2112 . 

4. )()]([ln ' zz   , where )(z  is the Weierstrass 

“sigma-function” 

Having found )( 0tu , one period of the profile of the 

Stokes wave will be given by the formula 

 

                  ).(2(
2

1
)( 0

3/2

00 tuA
g

tf               (4)    

                                    

 As the function )( 0tu  is symmetric, by using the 

properties of “zeta-function” we can rewrite the equation (2) 

in the form 
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   Assume that the solution of (5) is representable in the 

form 
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where )( 0tv  is an unknown positive function of Holder 

class. 

By the representation (7) it is obvious .0)]0([ uA  

We now suppose, that 1  is rather small and taking into 

account the properties of “zeta-function”, the formulas (3), 

(8), (9) and, we can rewrite equation (5) in the following 

form 
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 )(z  is the Weierstrass “sigma-function”. According to 

the properties of “sigma-function” the kernel ),( 00 ttK  is 

weakly singular. 

(10) is the integral equation with respect to )( 0tv . Let  

us rewrite it as 

 

],0[,),()(ln
)(2

)(

)12();(),()(ln
)(2

)(

1000

0

0

00

0

*

0

*

00

000

0

1

1


















tdtttKtu
tu

g
tf

tfdtttKtv
tu

g
tv

 

 Using the representation (3) and properties of “zeta-

function” we obtain 
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The kernel ),( 01 ttK  has the logarithmic singularity, the 

kernel ),( 02 ttK  is continuous on the set ],0[],0[ 11    

and 
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Now, let us consider the first term of the formula 
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 Taking into account formula (13) and inserting   

12
sin'



t
t   into first term of (16) we obtain   
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 By using the representations (15), (16),  (17) and properties 

of the Cauchy type integrals [11],  it is easy to conclude that 

the function 
*f is Hölder continuous in ],0[ 1 , belongs to 

the class 
*

H  at the point 00 t  and 

                            

.)12ln(
2

)( *

2

1
0

*

0
lim

0

A
g

tf
t


 


           (18)              

 

  Now, let us suppose 
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Inserting (19) into the right -hand side of (12) we obtain 
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Hence, instead of equation (12) we consider the 

approximate equation (20). Let us analyze this equation. 

  Let be ,0;],,0[ 001  MMvCSv  is a 

bounded set of functions, from (20) according to the 

properties of the kernel ),( 00 ttK and formula (18) we 

obtain 
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  Also, the following formula is valid 
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Taking into account the properties of the functions in (21) 

and (22)  
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and formula (18) we conclude that the set of functions S is 

uniformly bounded and uniformly continuous. 

Consequently, Arcella conditions holds and the operator 

B is completely continuous. 
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  Also, according to the formula (18) and Muskhelishvili 

[11] and Mikhlin [13] the function on the right- hand side of 

(20) is Hölder continuous in ],0[ 1 and belongs to the class  

*

H  at the point 00 t  . 

  Hence, we have proved the following  

 

 

THEOREM 1. The operator B on the right- hand side of 

(20) is completely continuous in the space ],0[ 1C , if the 

integral equation (20) has the continuous solution, it belongs 

to the Hölder class and .)( *
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  Now, let us prove, that the solution of equation (20) exists. 

  Putting the notation 11tt  in the integral of the right- 

hand side of (20) we can represent this integral equation as 
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 The following theorem is valid 

 

THEOREM 2. There exists the solution of equation (23) of 

the class ],0[ 1C  in the ball  
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Taking into the account the representation (23) we  

obtain 
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The formula (25) implies, that 0 satisfies the condition 
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  Hence, according to Shauder’s fixed point principle, if 

1 and 0 satisfy the condition (26) there exists the 

continuous solution of equation (23) and consequently of 

equation (20). 

  According to (5), (8), (9), (20), (23) and Theorem 2. we 

conclude, that the function given by the formulas (8), (9) is 

the solution of equation (2) in the ball (24). 

       

IV.  CONCLUSION 

 

 There exist the Stokes gravity periodic waves of the form 
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where )( 0tv  is a Hölder continues positive function, 1 is 

a rather small positive number. 

  As 0 from the condition (26) is rather small one of the 

approximate solutions of the equation (20) is 
*

0 )( Atv   

and consequently the approximate solution of the equation 

(2) of the type (8), (9) is 
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  According to (4) the corresponding Stokes wave will be 

given by 
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Below, the graph of (27) is constructed by means of Maple-

12 for the different parameters and is given in Figure 1, 

Figure 2 and Figure 3. 
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Fig.1. The graph of (27) in case of 

05.0;01.0; 1

*  AgA  

 

 

 
 

Fig.2. The graph of (27) in case of 

.5.0;1.0; 1

*  AgA  

 

 

 
 

Fig.3. The graph of (27) in case of 

05.0;01.0;2 1

*  AgA  

 

APPENDIX 

   In the work of the author [6] by means of the conformal 

mapping method the Stokes problem was reduced to the 

nonlinear integral equation of the different form in a new 

variable  
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where C is the definite constant, a and b are the arbitrary 

small positive constants.  In [7] the approximate solution of 

this equation is given. 
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